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LINEAR AND NONLINEAR INSTABILITIES OF BLASIUS BOUNDARY

LAYER PERTURBED BY STREAMWISE VORTICES

PART II: INTERMITTENT INSTABILITY INDUCED BY

LONG-WAVELENGTH KLEBANOFF MODES

XUESONG WU* AND MEELAN CHOUDHARI?

Abstract. This paper presents theoretical results on the stability properties of a Blasius

boundary layer' perturbed by Klebanoff modes. The latter are taken to be the signature of a

low-frequency three-dimensional convected gust, which may be either isolated or periodic along

the spanwise direction. They can be treated as a distortion to the basic state because of their

extremely low frequency and long streamwise wavelength. It is found that even relatively weak

Klebanoff modes may alter the curvature of the underlying mean flow by O(1) in a near-wall region.

The resulting perturbed flow may support linear instability modes with a streamwise wavelength

much shorter than the spanwise length scale of the distortion.

When the amplitude of tile Klebanoff modes exceeds a threshold range, the instability modes

become predominantly inviscid, and their growth rates and characteristic frequencies are much

higher than those of tile Tollmien-Schlichting (T-S) waves in an unperturbed Blasius flow. A

localised distortion supports both sinuous and varicose modes of instability, with the sinuous modes

being generally more unstable than the varicose modes. Overall, the instability is intermittent in

time and localised in space, occurring only in certain phases of the modulation cycle and within

a specific window(s) along the streamwise direction. In particular, the dominant sinuous modes

appear only during the phase in which a low-speed streak exists. A periodic distortion supports

spatially quasi-periodic modes through a parametric resonance mechanism.

The nonlinear development of a localised sinuous mode is followed using nonequilibrium critical-

layer theory. During the first stage of nonlinear evolution, the amplitude function is governed by an

integro-ordinary-differential equation, the solution of which develops a finite-distance singularity if

tile viscous effects are not too large. In the vicinity of this singularity, the disturbance amplifies over

a much shorter streamwise scale. Its amplitude is now governed by an integro-partial-differential

equation instead, which describes the (simultaneous) spatial and nonlinear modulation of the in-

stability mode. The solution of this equation appears to develop yet another singularity, indicating

the onset of fully nonlinear yet inviscid dynamics. We suggest that the temporally intermittent and

spatially localised instability and its subsequent nonlinear development lead to patches of streak

oscillations. The apparent convection velocity of such patches is estimated to be about 0.82 times

the free-stream velocity.
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1. Introduction. It is known that low-frequency components of three-dimensional vortical

disturbances in the free stream can be entrained into the boundary layer due to the nonparallel

flow effect, producing significant distortion in form of alternate thickening and thinning of the

layer along the spanwise direction. This observation goes back to Dryden [9] and Taylor [31] who,

in fact, suggested that the entrained vortex motion, rather than the Tollmien-Schlichting (T-S)

instability, was the leading cause behind transition to turbulence. The dispute continued until the

experiments of Schubauer & Skramstad [29], which fully validated the work of Tollmien [33] and

Schlichting [28] by suppressing the effects of free-stream turbulence, since then, most studies have

focused on transition under low-amplitude disturbance environments, for which the T-S modes

provide the starting point for understanding the overall transition process.

Motivated by its relevance to turbomachinery, however, there has also been a considerable

amount of work on transition at. moderate to high levels of free-stream turbulence. This has

renewed tiie interest in the findings of Dryden [9] and Taylor [3111 Recent experimental, studies

(See e.g. Kendall [18], X,Vest!_, e t al. [37], Matsubara & Alfredsson [26], an d references therein) show

:that the boundary layer filters out the high-frequency components of free-stream turbulence, while

amplifying the low-frequency parts of the signature. The distortion within the boundary layer is

dominated by the streamwise velocity fluctuations, which are manifested in the form of longitudinal

vortices or streaks. In recognition of tile contribution i)y Klebanoff [22], Kendall [18] referred to

these low-frequency streaks as the Klebanoff modes, and that name has been widely adopted in

:i_;e:literature since then. However, because the K!ebanoffmodeS:do not actually represent: ti_e

eigenmodes of ttle flow, we shall refer to them as Klebanoff distortions or fluctuations in order to

avoid potential confusion when genuine instability modes are being discussed.

Since Klebanoff fluctuations are of low frequency, one might be inclined to believe that an

appropriate steady perturbation may capture the essential physics involved. Indeed, a steady

perturbation in tile oncoming flow can induce a boundary-layer distortion that is similar to the

Klebanoff motions (Bradshaw [5]). Initiated by Bradshaw's observations, Crow [8] calculated the

resulting distortion using linearized boundary-layer equations and was able to describe the alter-

nate thickening and thinning of the boundary layer near the leading edge as noted in the earlier

experiments by Taylor [31] and Bradshaw [5]. The boundary-layer response to small-amplitude

unsteady vortical disturbances was calculated by Gulyaev et aI. [16] and Choudhari [6] using the

unsteady form of linearized boundary-layer equations. They showed that the low-frequency distur-

bances induce a large streamwise velocity fluctuation in the boundary-layer region, which exhibits

a significant growth in the downstream direction.

The boundary-layer approximation is valid silfficiently close to the leading edge, where the

thickness of the boundary layer is smaller than the spanwise length scale of the perturbation. Due

to a continued growth of the boundary-layer thickness (as well as of the perturbation amplitude),



however,cross-flowellipticity(anddisturbancenonlinearity)mustbecomesignificantsufficiently
downstreamofthisregion.Thesubsequentevolutionoftheboundary-layersignatureoffree-stream
disturbancesis describedbytheboundary-regionequations(Goldstein& Leib [13]; Wundrow &

Goldstein [43]; and Leib, Wundrow & Goldstein [24]). Wundrow & Goldstein [43] considered the

generic ease for purely steady perturbations, such that the nonlinearity and cross-flow ellipticity

come into play simultaneously. In this case, the distorted flow differs from the original Blasius

profile by O(1) and, moreover, becomes inflectional in the main part of the boundary laver. It can

therefore support a new and stronger class of inviscid Rayleigh instabilities, which may lead to

the onset of turbulence via an alternative route to tile T-S modes, namely, the by-pass transition.

Leib et al. [24] used the linearized form of the unsteady boundary-region equations to describe the

low-frequency Klebanoff fluctuation further downstream of the leading edge. By representing the

broad-band free-stream turbulence as a superposition of Fourier modes, Leib ctal. [24] calculated

tile streamwise evolution of the root-mean-square of the fluctuations within the boundary layer,

which compared favourably with the relevant experimental data.

As indicated above, experiments have provided fairly complete quantitative data about the

characteristics of Klebanoff fluctuations themselves, and considerable theoretical progress has also

been made in terms of characterising/predicting them. However, the transition process in the

presence of these fluctuations remains poorly understood. In particular, it is not clear if the T-S

waves continue to play an important part in transition or if the latter is initiated by some other

instabilities, e.g. the instability of the streaks.

Direct laboratory investigations of the transition process in the presence of Klebanoff fluctua-

tions have been made by a number of investigators. At moderate levels of free-stream turbulence,

Arnal & Juillen [2] and Kendall [19] have observed an intermittent appearance of wavepackets

inside the boundary layer. While the exact origin of the wavepackets was unclear, they appar-

ently resembled T-S waves. A series of landmark experiments conducted by Kendall has revealed

some unusual characteristics of these wavepackets. First, they appear only when the free-stream

turbulence level exceeds a threshold of about 0.1%. Second, the growth rates of these packets

are considerably larger than those of the T-S waves, being also dependent on the turbulence level

(Kendall [20], [21]). Third, the frequencies of these waves are also higher than those of T-S instabil-

ity. Finally, these packets are relatively confined in the spanwise direction, spreading rather slowly

as they propagate downstream. There has been no physical explanation for the above features thus

far, except for the conjecture by Goldstein & Wundrow [15], who attributed the intermittency of

the wavepackets and the nonlinear dependence of their amplitude on the turbulence level to ran-

dom receptivity via nonparallelism of the mean flow (due to either a rapid boundary-layer growth

near the leading edge and/or geometric perturbations in the region downstream). An alternative

hypothesis (which does not preclude the scenario proposed by Goldstein & Wundrow) is suggested

in the present study, which attempts to shed further light on some of tile unusual characteristics

of the high-frequency wavepackets noted above.

Rather than studying naturally occurring wavepackets, Watmuff [34] used a harmonic point

source to generate spanwise localised wavetrains in a controlled fashion. Even a weak Klebanoff



perturbationwasfoundtoseverelydistortthewavetrain,suchthatacomparisonwithcalculations
that (lidnot accountfortile Klebanoffdistortionswasalmostmeaningless.On theotherhand,
however,theartificiallyexcitedwavetraindidnotexhibittheexcessgrowthasobservedbyKendall
for tile naturallyoccurringwavepackets.Watmuffattributedthis differenceto thefact that the
Klebanofffluctuationswererelativelyweakinhisexperiments.

Boikoet al. [4] studied the development of an artificially excited planar T-S wave in a boundary

layer subjected to 1.5% free-stream turbulence. As expected, the planar wave front was deformed

by the Klebanoff fluctuations; however, the growth rate of tile T-S wave was reduced (relative

to that in an unperturbed Blasius flow), which suggests that the Klehanoff fluctuation now had

a stabilising effect on the unstable modes at higher frequencies. The ultimate breakdown of the

laminar boundary layer was, however, still associated with the nonlinear development of the T-S

wave. These observations present a rather paradoxical situation, since it is well known that higher

intensity free-stream turtmlence generally hastens the laminar-turbulent transition. A similar prob-

lem was recently investigated by Watmuff [36], albeit in a different experimental setting. He also

observed the distortion of the wavefront, but found that the growth rate was hardly affected by

the K[ebanoff =distortions. Neverthe]ess,:transltion in his experiments did occur slightly earlier

than when {.I_(7]kqebanoff fluctuation was abse/it:. Finally, Bakchinov et ai. [3] }lave investigated

the interaction between a planar T-S wave of relatively high frequency and a localised disturbance

introduced in the free-stream region. When generated separately, each of these disturbances was

found to decay. But when introduced simultaneously, Bakchinov et al. observed enhanced ampli-

fication of a broad-band low-frequency oblique waves, presumably due to a nonlinear interaction

between the two artificially introduced disturbances. The nature of this interaction has not been

explained as yet.

In addition to investigating the role of conventiona.1 T-S waves during transition under moderate

levels of free-stream turbulence, it is also important to examine alternative instability mechanisms.

Streak instability, in particular, has attracted a lot. of attention in recent years. Matsubara,

Bakchinov & Alfredsson [25] reported that streaks or Klebanoff modes are unstable, which can

lead to a meandering and oscillation of the streaks and all eventual breakdown into turbulent

spots. Unfortunately, the random nature of the streaks implies that a detailed quantitative study

of their stability would be rather difficult,. Therefore, some researchers have chosen to generate

steady spanwise-dependent flow in a controlled manner, typically through surface suction/blowing

or surface roughness. These artificially created distortions are akin to Kiebanoff modes in some

respects and, tience, these kinds of studies may shed useful light on the streak instability. For a

survey of the main findings from these studies, the reader is referred to the Part I of this paper

(Wu Lu0 [40]).
In an effort to understand streak breakdown, Andersson et al. [1] modelled the Streak structure

by a steady, spanwise-periodic distortion to a Blasius boundary layer. An inviscid stability analysis

based on Floquet theory suggested that the streaks become unstable only when the amplitude of the

associated streamwise velocity perturbation exceeds approximately 26% of the free-stream velocity.

This estimate is perhaps too high to be representative of typical Klebanoff distortion in natural



disturbanceenvironments.Basedon thepresentwork,it appearsthat a partiMexplanationfor
thisdiscrepancymaywellberelatedtotheunsteadinessoftheKlebanoffdistortion,which(inspite
ofthelowfrequenciesofthedistortion)is foundto exertasignificanteffect,onthehigh-frequency
secondaryinstabilities(see §2.2).

A direct numerical simulation of the transition initiated by high levels of free-stream turbulence

was first performed by Rai & Moin [27]. Their simulations involved three sequential streamwise

domains in order to cope with the different resolution requirements associated with the three

dominant physical processes relevant to this problem, viz. (a) interaction of free-stream turbulence

with the leading edge, (b) subsequent development of disturbance within the boundary layer plus

the early transition stage, and (c) the late stages of transition plus the fully turbulent state. This

treatment allowed for a realistic description of the practical situation while avoiding the excessive

grid count that would otherwise have been required.

Jacobs & Durbin [23] carried out a direct numerical simulation of the bypass transition caused

by strong free-stream disturbances, which were represented by a superposition of modes from the

contilmous spectrum of the Orr-Sommerfeld equation. Unlike Rai & Moin [27], the perturbation

was imposed at. some large distance downstream from the leading edge. Due to the reduced size

of the simulation domain and the increased computational power over the years, Jacobs & Durbin

were able to perform the simulation on a finer mesh than what was available to Rai & Moin

[27]. It was found that the boundary-layer response was indeed dominated by streamwise streaks.

However, these streaks appeared to be fairly stable and it was only after they had lifted up to the

outer part of tile boundary layer to form a 'backward jet' that the breakdown to turbulent spots

occurred. Their simulation also revealed that the breakdown was local, being determined by a

combination of the strength and the length scale of the local distortion; the collective instability

of the Floquet type was not observed.

In this paper, we investigate the instability of a Blasius boundary layer perturbed by Klebanoff

distortions. Our main interest will be in small-amplitude distortions, partly because they allow the

phenomenon to be studied on an analytical basis but also becmlse the amplitude levels measured

in most experiments do not exceed 10-15% of the free-stream velocity. One significant assumption

underlying the present work involves the spanwise length scale of the Klebanoff distortion, which is

assumed to be larger than the boundary-layer thickness. As in Part I, we address two main issues:

(a) how the Tollmien-Schlichting instability, which operates in the absence of any distortion, is

modified by a weak Klebanoff fluctuation, and (b) whether a weak distortion can induce an inviscid

instability which is absent from the unperturbed boundary layer. An asymptotic approach based

on the high-Reynolds-mmlber assumption is employed to describe both the Klebanoff fluctuation

and the instability of the perturbed flow in a systematic and consistent manner.

In §2, we formulate the problem in an asymptotic framework. A three-dimensional vortical

disturbance is prescribed in the oncoming flow. The spanwise distribution of the perturbation

is allowed to be either localised or periodic. The relevant inviscid solution, valid outside of the

boundary layer, is obtained first. For tile scalings adopted in this paper, the boundary-layer

signature of this inviscid perturbation, i.e. the Klebanoff distortion, is governed by the linearized



unsteadyboundary-layerequations.In §2.2,wepresentthedetailsoftile scalingargumentswhich
determineboth the characteristic wavelength of the instability modes as well as the required

magnitude of the Klebanoff distortion. Depending on the relative values of the streamwise and

spanwise length scale of the instability, two distinct types of instability modes may be considered.

The first class of modes corresponds to the fully three-dimensional (i.e. oblique) modes that were

identified by Goldstein and Wundrow [14] in the context of purely stationary distortions to a

Blasius flow. The other set of modes is primarily two-dimensional, i.e. it has significantly shorter

wavelengths in the streamwise direction than the spanwise length scale involved. The latter scale

is, of course, the same as that of the distortion for both classes of modes. The Goldstein-}Vundrow

(GW) modes are based on a parametric resonance mechanism, and therefore exist only for global

distortions that are periodic in the spanwise direction.

The linear instability of the modified flow is analysed in _31 Due to our interest in high-

frequency wavepackets that are localised along the spanwise direction, the case of localised distor-

tions (and, therefore, the second (:lass of instabilities mentioned above) is emphasised in this paper.

We show that the spanwise mode shape of the instability is governed by a SchrSdinger equation,

which describes the interaction between the instability mode and the Klebanoff distortion within

the bulk of the boundary layer. The potential function in this Schr6dinger equation is proportional

to the local wall-shear perturbation induced by the the Klebanoff distortion. The growth rate of

the instability mode is determined at a higher order in the asymptotic analysis, by the curvature of

the distorted flow at the critical level of the instability mode. For a localised distortion, solutions

representing sinuous and varicose modes are presented, and their relative importance is assessed.

Further calculations are carried out for a spanwise localised Klebanoff fluctuation to demonstrate

the intermittent and local nature of the instability.

The nonlinear development of a sinuous instability mode through a sequence of distinct asymp-

totic sub-regimes is considered in §4. In §5, we discuss how the preceding analysis can be applied

to the case of spanwise-periodie Klebanoff distortions. The main findings from this work and their

physical implications are summarized in §6.

2. Formulation. Consider the two-dimensional incompressible boundary layer due to a uni-

form flow with velocity U_= past a semi-infinite flat plate. Superimposed on the incoming stream

is a small-amplitude, three-dimensional vortical disturbance (i.e. a 'gust') that is assumed to be

advected at the free-stream speed. For simplicity, we also assume that the free-stream disturbance

is harmonic in time, with a frequency of kIU_/A where kl denotes the nondimensionai frequency

parameter and A represents the dimensional length scale of the gust in the spanwise direction.

The flow is described in the Cartesian coordinate system (x, y, Z), which has its origin at the

plate leading edge. Here, x, y and Z denote the streamwise, normal, and spanwise coordinates

nondimensionalized with respect to A. The time variable t is normalized by A/U_ and the velocity

components (u, v, w) and pressure p are normalized by U_,_ and pU_, respectively, where p denotes

the fluid density. The Reynolds number

RA -- _A/u



is assumed to be a large parameter throughout this analysis (i.e. RA >> 1).

The streamwise and normal velocity components of the Blasius flow are given by

= Y/},

where F satisfies the Blasius equation

(2.1) F'"+FF"=O, F(0)=F'(0)=0, F'(oo)--+l, with _=/? _.

2.1. Flow distortion induced by Klebanoff modes. Tile boundary-layer response to a

three-dimensional eonveeted gust was analyzed by Gulyaev et aI. [16], Choudhari[6] and Leib et

al. [24]. Similar to their work, the velocity field of the disturbance superimposed on the oncoming

flow has the form

(_ , a , - )) ei k,(*-0+ik_v(2.2) =., ,,ooB ,

where eD represents tile gust amplitude @D <_< 1), and kl and k2 denote the streamwise and

transverse wavenumbers, respectively. As shown in the above studies, tile amplification of the

gust signature within the boundary layer is directly proportional to the ratio of the spanwise

and streamwise wavenumbers, respectively. Accordingly, we assume that kt, k2 << 1, which also

amounts to t_oo << fi_, _o_ (= O(1)). For the most part, our interest will be confined to the range

of streamwise locations that corresponds to

(2.3) a,,<< RA,

so that the spanwise length scale of the disturbance is significantly greater than tile local thickness

of the boundary-layer, and

(2.4) z << eD', ,

which allows one to suppress the effects of disturbance nonlinearity as the gust is advected with

the free stream (Leib et al. [24]). We observe that the measured properties of Klebanoff modes

are closely tied to the wavenumber-frequency spectrum of turbulence in the upstream flow and,

therefore, will vary from facility to facility as well as between wind tunnels and tile flight environ-

ment. Therefore, the accuracy of the "long spanwise-wavelength" assumption will accordingly vary

from one disturbance environment to another. For example, as pointed out by Leib ct al. [24], the

measured length scale of Klebanoff fluctuations was nearly five times larger than the boundary-

layer thickness in the original experiments of Klebanoff [22]; however, the scale was closer to the

boundary-layer thickness in the experiments by Kendall [18] and Westin et al. [37]. In the present

context, of course, the assumptions (2.3) and (2.4) have been motivated primarily by the resulting

simplicity of the analysis.

Note that we have allowed for a general spanwise dependence of the gust via the arbitrary

function B(Z). This generalization was prompted by the fact that, in practice, the free-stream

disturbances are stochastic in nature, having a finite correlation length along the spanwise direction.



Anygivenrealizationmay,therefore,resembleafinite-extentperturbationratherthana spanwise
periodicone. A similarlygeneraldependenceof the free-streamdisturbance,eitheron x (or,

equivalently, on t due to the convective phase) and/or on y, may also be allowed for in this

framework via a Fourier superposition. However, for simplicity, we will proceed on the basis of

tile harmonic assumption (2.2) and, later, indicate how the final results may be generalized to an

arbitrary form of convected free-stream vorticity.

Tile inviscid solution (valid outside of the main boundary layer) for klx = O(1) can be written

as (Leib et al. [241)

(2.5) UD = eD[u_ + V 0]

where ¢ denotes the velocity potential and, to the required order, it satisfies the Laplace equation

(2.6) V2¢ = 0.

The boundary conditions are given by

V¢--+0 as y_;

(2.7)

¢(x,0) =0 (x<0), and ¢_(x,0) = -o_/7'(Z)e_k_('-t_ (x > 0)

The full solution to the boundary-vahle problem (2.6)-(2.7) can be found by the standard Wiener-

Hopf technique. However, for the purpose of stability analysis, we confine ourseh,es to the region

x >> 1, such that klx = O(1) while (2.3) is still satisfied. The inviscid solution under these

conditions can be obtained by neglecting the x-derivative term in (2.6) and solving the resultant

two-dimensional Laplace equation in the half space y > 0. This yields the following solution for

the slip velocity components in streamwise and spanwise directions:

(2.8) us_fi_ , w. _73_ d_.

The signature of the above inviscid s0iution Within the boundary iaYer corresponds to a small

perturbation to the Blasius flow and, to the leading Order of approximation, is given by

(2.9) u_ = eD[_ r, ( 2_kl ) ½f., l_. ] e- i/- -+-c.c. -k-. . .
RA

where we have put

=klx, t=klt.

_: :. . : _:: .......................

Irrespective of the value of the trans_;erse wavenumber k._ or the spanwise distribution B(Z), the

solution for the boundary-layer distortion can be split into a sum of two parts:

[ Ws('Z
(2.10) (LT, I',IV) = w"(Z)f',w_(Z)ITV] _ + u_[Ul,_],0] +

[-- k-""_ ' kl ....

Since k_ << 1 for the low-frequency Klebanoff fluctuation, the second part is asymptotically smaller

than the first and, therefore, does not influence the stability of the distorted flow to the leading
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order. Accordingly, only tile first part of tile Klebanoff distortion in (2.10) needs to be considered

in tile present work. Equation (2.10) also shows that tile streamwhse velocity perturbation within

the boundary layer is much larger in amplitude than the free-stream disturbance. The functions

(C', _-', I_ :) are governed by the linearized unsteady boundary-layer equations (Leib et al. [24])

(2.11) OU" _7 0U OI r
O_ 2_ O_ + _ + tzl = o,

(2.12) _iC. + F,O_] F OU rIF"c + F,,f. = 1.02C "
0_ 2y 0_1 2_ 2_ 002 '

_ili,+F, OIi" F OISV _ 1 02Ii '(2.13)
0:_ 2_ 07/ 2_ 07/-° '

where 7?is defined by (2.1). The appropriate boundary conditions are

C=I-_=I_=0 at 77=0,

(2.14) }

U ---+ O, l_" --_ e i2 as r/--+ _.

In the upstream limit (Y, --+ 0), the flow becomes quasi-steady and its solution matches with that

obtained by Crow [8],

1 .(2.15) U --+ -_2_lF , f_ --+ (,12F '' - 3rlF' - F) , ti" _ F' .

On the other hand, as 2 _ co, the perturbations move away from the wall and towards the edge

of the mean boundary layer (Choudhari [6], Leib et al. [24]). Because the maximum distortion to

the boundary-layer flow is confined to tlle region 2 = 0(1), this is the region of interest from the

standpoint of investigating potentially radical changes to the linear instability of the flow.

We will show in §3 that the complete profiles of tile Klebanoff distortion are not required to

determine the leading order instability characteristics of tile perturbed flow; instead, the charac-

teristics are completely determined by local values of the slope/9'(0, 2) and the torsion [7'"(0, 2)



of tile streamwise velocity fluctuation near the surface. In fact, the wall torsion itself is related to

tile wall-shear t)erturbation by the simple relation

(2.16) C_m(0, ;_) = -2i Y:C'(0, Y') ,

which follows from a differentiation of (2.11) with respect to _ and setting r/= 0. Tile importance

of the near-wall features of the gust signature is easily understood by recalling that the viscous

instability modes of the unperturbed Bta.sius flow are controlled by the mean value of the skin

friction parameter and, as noted by Goldstein & Wtmdrow [14], any inflectional behaviour of the

perturbed base flow is also confined to a narrow vicinity of the surface (since the amplitude of

the Klebanoff distortion is assumed to be small in comparison with the free-stream speed). The

streamwise variation in the amplitudes of the wall-shear and wall-torsion fluctuations due to the

gust is displayed in figure 2.1, which underscores the previously made observation that the region

• , = O(1) accounts for the range of locations (or, equivalently, the range of frequencies at a given

streamwise location) wherein the boundary-layer flow is distorted the most.

2.2. Sealing arguments. As discussed in §2.1, the Klebanoff distortion in the boundary.

layer is concentrated in the streamwise region where _ = O(1), i.e. at a distance of l* = O(k_lA)

downstream from the leading edge. Accordingly, we introduce the Reynolds number based on/*:

(2.17) R - UocI* _ RA .
/]

The base flow which has been distorted by this low-frequency fluctuation is inhomogeneous in both

space and time. Although no comprehensive theory exists to describe the complete instability

characteristics of such flows, we will exploit the weakness of the inhomogeneity to identify some of

the interesting features of this instability.

Similar to the case of purely steady distortions due to streamwise vortices (Goldstein &:

_,Smdrow [14]; Wu & Luo [40]), the spanwise velocity perturbation induced t)y the Klebanoff

fluctuation is small compared with the corresponding perturbation in the streamwise velocity.

Therefore, to the leading order of approximation, the modified base flow corresponds to a unidi-

rectional shear flow, with the primary shear being along the wall-normal direction and a secondary

shear along the span,_ise coordinate. Such flows can support viscous-inviscid interactive instabili-

ties with O(R1/4Uo_/l *) frequencies, which are governed by the triple-deck structure (Smith [30]).

However, it is easily verified that the amplitude of the Klebanoff distortion must be comparable to

the free-stream speed in order to produce an O(1) change in the growth rates of these instability

modes. In contrast, even relatively weak Klebanoff distortions can have a significant effect on the

instability modes at higher frequencies (compared with those of the viscous-inviscid interactive

modes), whose growth characteristics are controlled by the curvature of the perturbed flow in the

vicinity of the wall. An important observation in this context is that, for the low-frequency (but

unsteady) distortion,

(2.18) /)" ,-. 71 as rl -+ 0 .
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Therefore,ina thin regionnearthesurface,theKlebanofffluctuationat.suitablevaluesofkl and

el) may alter the curvature of the unperturbed Blasius profile by O(1), while the perturbation to

the streamwise velocity itself remains small compared with the free-stream speed. This, in turn,

can lead to fundamental changes in the nature of instability in the distorted flow, by allowing

inviscid instability modes to exist in addition to the primarily viscous T-S modes supported by

the Blasius flow. The above scenario is rather different from the case of a completely steady

distortion, for which /.7" _ r/2 as _j -+ 0 and, therefore, no new instability can emerge until the

distortion amplitude becomes O(1). Thus, there exists a crucial difference between steady and

unsteady distortions, even if the frequency of the distortion is significantly smaller than that of

the instability modes.

The curvature of the distorted streamwise profile becomes comparable with that of the Blasius

profile itself within a thin region near the wall. The O(&) thickness of this region (relative to the
1 .

O(R-_l ) thickness of the mean boundary layer) is determined by the balance

(2.19) _. eDa(_) _ .

Given the possible occurrence of an inflection point at distances of O(a) from the surface, it follows

from the classical Rayleigh scalings that the most unstable inviscid modes will have phase speeds of

O(&5'_) and wavelengths of 0(6 -1 R-½1*) along the streamwise direction. Furthermore, consistent

with our focus on local distortions, we seek instability modes whose streamwise wavelengths are

shorter compared with the spanwise length scale of A.

The spanwise mode shape of the above instabilities (and their growth rate) is determined by

the spanwise distribution of the Klebanoff distortion at the location of interest, similar to the

instability modes considered in Part I (which involved purely stationary distortions). A crucial

difference from Part I is that the curvature of the Klebanoff distortion is smaller by a factor _ in the

wall layer than in the main part of the boundary layer. Unlike in Part I, therefore, the instability

characteristics of the perturbed flow are not solely controlled by the distortion in the wall region.

The distortion in the bulk of the boundary layer also "affects the instability wave. We will show in

§3 that balancing the 'scattering' effect due to the spanwise modulation with the amplification of

of the instability mode yields the constraint

^a R-½1*
(2.20) ~ --

A

It is easy to deduce fi'om (2.17), (2.19) and (2.20) that the width of the wall layer & is related

to the Reynolds number RA and the frequency kl of the Klebanoff fluctuation via

(2.21) _r ,_ (Ra/ka)-_ ,

and that the required amplitude of the free-stream disturbance is

(2.22) f-D _ klR "_ R_k_ •

_ thus set

11



so that B0 = O(1) denotes the scaled amplitude of the distortion.

It can be shown that for the Ktebanoff distortion to induce an O(1) (or larger) change in the

viscous growth rate of the instability modes of interest (relative to that in an unperturbed Bla_sius

flow), we must have 5 >> R-_. On tile other hand, recall that the foregoing analysis was based

on the assumption that 5 << 1. These considerations impose the following restriction on the ratio

kl of the spanwise and streamwise length scales of the Klebanoff distortion,

(2.23) /_21 << kl << R2 6 .

or, equivalently, on the range of streamwise locations where the analysis in §§3-4 is formally valid,

J.Z l*

(2.24) R,_a << _ << Ra •

Correspondingly, tile amplitude of tile free-stream disturbance can be anywhere within the range

_/_
(2.25) R-£ _ << eD < R A =3

While the Klebanoff distortion moduiates the Blasius flow on the slow variables • and T = kit,
2 :_2 ^ i-

the instability wave oscillates on the much faster variables aRsx and a2R= t. We thus introduce

(2.26) i = &R_ (eta? - &wt) ,

to describe the oscillation of the carrier wave, where the scaled wavenumber and frequency o and

w are both O(1), and (_ expands as

t3' _---O_0 + O'Ct 1 -I- gr2t3:2 -1- _r3_11:3 Jr- ....

It turns out that _do, al and (,._ are purely real quantities, and a3 is the: first term to have a

nonzero imaginary partl in other words, the growth rate of these instability modes is of 0(04),

which exceeds the viscous growth rate of the lower branch T-S modes when # >> R -1/32. To

-facilitate the subsequei_t=studyof nonlinear development of the above modesl we choose to absorb

both amplitude and phase variations at the level of aa into an amplitude function that varies on

the scale

(2.27) X = 04R½5: = O(1) .

Since X is also much faster than _ according to (2.21) and (2.23), the space and time modulation

of the distortion can be treated as parametric when the stability of the perturbed flow is studied.

3. Linear instability analysis. As in Part I, the linear instability problem is governed by a

five-zoned asymptotic structure. In the present problem, however, the Klet)anoff distortion in the

main deck plays a crucial role in determining the spanwise mode shape. In contrast, the relatively

strong distortion in the wall region alone was found to control both the mode shape and the growth

rate for the case mmlyzed in Part I.

12



The appropriate transverse variable in tile main part of the boundary layer corresponds to

"_R½

9 = --V-y = (2_)_,_.

Tile total streamwise velocity of the base flow is then given 1)y

(3.1) U. + _UD(9, Z; J:,

where UD denotes the normalised distortion profile. For the most part, we focus oil the the case

of a time harmonic free-stream disturbance, for which U_ = -w'_(Z)((/e -ir+c.c.). However,

the linear instatlility analysis presented in this section is also applicable to broadband free-stream

disturbances. The eigensolutions in the main deck assume the usual form

(3.2) ,, = _{,4(x)_(z)_,o(ii)+ _,, + _,._ + 6,% + ...} e_+c._.,

= _{A(X)¢(Z)i,o(fl) + _, + 6,_._+ _7,._+...} e;_(3.3) Y +c.c. ,

(3.4) ,: = _ { A(X),_'(z)_,o(,))+ _,, + _,_,2+ _,_,_+...} e'_+c.c.,

= _6,{A(X)¢(Z)_o(;I)+ _,_,+ _% + _% +...} e'_(3.5) P +c.c. ,

where e represents the amplitude of the streamwise velocity fluctuation associated with the eigen-

modes, and the (normalized) amplitude fimction A(X) illustrates the growth (or decay) of the

eigenmode in the streamwise direction.

The leading-order terms in the expansions (3.2)-(3.5) have the familiar solution

(3.6) _o = U_9 , _o = --iaoUB , 150=Po , lbo =-(iao)-JPoU/_ '

where P0 is a constant. The second-order terms satisfy

i ao_l + _ = - i c,1U'BA_

(3.7) i c_oUuft_ + U_ = - i aoPoAaV - i(a_ UB - w)U_A¢I, - R_ ] ,
2 _9 -!

a05_'4_ = -Pl

where primes denote differentiation with respect to _) and the forcing term

(3.8) R_ = (i OtouoUD + voU_D)A_ = i Cto(U_BUD -- UBU_D)Arb

arises from the interaction between the instability wave and the distortion. The solution to (3.7)

is found to be

{ /'d,;_ }(3.9) b_ =--iOlo_lUB + iw+iaoPoUB U--_-iaoUD Aa2 ,

{ f� }Otl rt

(3.10) _, = _,U_ + -_oob, - Po U_ g-_ + _ + Ub A¢,

(3.11) /_, =/5 _ c_A,I, d_),

13



where q)l and /51 are unknown functions of Z that represent tile complenmntary solution to the

system (3.7). The inner limits (i.e. _) _ 0) of (3.9) and (3.10) arc given by

(3.12)

(3.13)

_31_ i(w- APo)A¢- {iaoO_A + iCxo(AD - AdoPo)AO}_l ,

_1 -+ q'tA + (-a_A + AD -- AJoPo)A'I',
S0

respectively, where _ = 0.33206 2-½ denotes the local wall shear of the Blasius flow; and

(3.14) _- 1 l (_,_TI(0;_',,t-)e-i r +C.C.)_.(z;_,t-) - ub(o,z;_,t-) (2_)-_w_(z)

represents the instantaneous wall-shear perturbation due to tile Klebanoff fluctuation. The con-

stant Jo is defined by

fo°(Jo = - U_ _2_)2 d ft + )_2a--Z ,

Wtiere a is an arbitrary constant.:: :

In the upper deck region corresponding to z] - 5# = O(1), it is adequate to consider the

solution for the perturbation in pressure and vertical ve!ocityl These expand as ::

(3.15) p = _o{A(X)(t_(Z)/-J_o -+-Opl -t- _2/_2 -+- _3p3 +...} e i( +c.¢7. ,

(3.16) v = e5{A(X)_b(Z)Oo + 5Or + 52f>) + #3_3 + ...}e i_ +c.c..

The leading-order pressure perturbation 100 and the first-order correction Pl are governed by

Po,oo- ao2Po= O, P_.orJ- agpl = (2aoa_ Czz)Apo ,

which yield the solutions

1 _o-
(3.17) p0=P0e -_°_ , p_=/5t(X,Z)e-_°'_+A(-a_'_+-_aoao¢ZZ)Poge- y

The corresponding solution for the vertical velocity fluctuation can be easily derived from the

vertical momentum equation,

i aoVo = -P_ ,

which implies the inner behaviour

i aoVl + i(aa - w)AOfJo = -P'i ,

i
(3.18) Oo--*-iPo O_-4-iP_+A(-i_-_-q)+ e_zz)Po as 9--+0

Ot 0 _ "

By matching the upper-deck solutions for pressure and vertical velocity with the outer expansions

of the main-deck solutions ((3.9) and (3.11)), we obtain

(3.19) /5 =/st _ c_I,,.4ff ,
-=

(3.20) i " • Pt

-iPt + (- i _----Aq'c_0+ _'bzz) o = -iaoACb_ + (iw'+ iaoJ_Po)A'_ ,

14



where

/2= U_d_, J_ = -1 d_.

The main-deck expansions (3.2)-(3.5) become nonuniform as/_ _ 0 and one must, therefore,

consider the Tollmien layer defined by

Y=f/a=O(1),

where the base flow can be approximated by the McLaurin expansion of (3.1),

A2
(3.21) b(A + &AD)Y + a4 (-_-_Y 4 + U'_'(O,Z;2, t-)] "3) +

Note that the velocity of the Blasius flow is changed only slightly by tile distortion, but its curvature

is completely altered.

Tim solution for the instability wave expands as

(3.22) u : _-{,4(X)(I_(Z)_o --[- oer I ^q 7_ }
-Jr O"L_2 + _3_r 3 + ... ei_ +c.c. ,

(3.23) v = e62 A(X)_(Z)f'o + eli + a'I2 + 63f'3 +... ei¢ +c.c.,

(3.24) p=e&{A(X)cb(Z)Po +b[_l +b2fJ.2 + 63/_.3 +...} ei( +c.c..

The leading-order solution is

t_=A, IT_=-iaoAY,

and matching with the main deck solution gives Po = a0, as well as the leading-order dispersion

relation

(3.25) ao = (Aw)½ .

The second-order terms in the Tollmien layer are governed by

ia0_l -4-_1' = - i_lAA¢_ ,

i(ao AY - w) Lrl + )_ = - i C_o/5 _ i al PoA_ - i a 1A"_A_]".

The matching requirement with the small-y asymptote of the main-deck solution (3.12) (3.13)

suggests that b_l and _-] must have the solution

(3.26) _, = ¢,A + (-_oA + AD - AJoPo)A_ }f'l = {-iaoqhA + iao(AD -- AJoPo)Acb}Y "

The above solution satisfies the continuity equation and substituting it into the momentum equa-

tion yields the constraint

(3.27) wA{q', + (-_-_ + -_- - JoPo)A@} = ao/_' + t,,PoAq_ .
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It follows from the relations (3.19), (3.20), (3.25) and (3.27) that the spanwise mode shape q'(Z)

is governed by the SchrSdinger equation

(3.28)

where wc have set

(3.29) -- _ 2
- -T - +c.c.)w;(Z) = --;Z(Z,

and

as=4C_o{C_ 1 _ _v}- Jo - z2)- .

Observe that a_ represents the eigenvalue of the SchrSdinger Operator With a potential function (or

"scatter" in the general sense) corresponding to the distortion )_D(Z; x, t) in the wall skin friction.

Even though the interaction between tile instability wave and the distortion takes place in the bulk

of the flow, the net effect of this interaction is fully characterized by a local quality )_D with the

detailed profile of the distortion being largely irrelevant.

It now transpires that the reason for choosing (2.20) was to ensure a balance between the

spanwise variation _zz and the wavenumber correction c_q_ in (3.28). Without retaining q'z2i _s

would be parametrically dependent on the spanwise variable Z. Any higher order terms involving

first and second order derivatives with respect to Z would lead to secular terms proportional to

and _2 respectively, which would have invalidated the entire perturbation scheme. An eigenvalue

problem analogous to (3.28) wa_ previously obtained by Timoshin & Smith [32] in the context of

purely inviscid singular modes induced by a stationary distortion. " ....

Thus far, we have not made any distinction between local and periodic distortions, in the

rest of this section and in the following section, we shall assmne that &D(Z) is localised. However,

the main results can be applied to the periodic distortion after rather minor modifications, as

discussed in §5 below. The SchrSdinger operator is well studied and there is extensive literature on

the structure of its spectrum. For our purpose, it suffices to mention that for a localised potential,

the SchrSdinger operator has a discrete spectrum (if the potential is not negative definite), and the

eigenfunctions q_ are real valued and decay exponentially as Z _ +ac. In this paper, we normalize

the eigenfunction such that

_c d2 2 d Z = 1.
o¢?

There also exists a continuous spectrum such that 4) remains finite and oscillatory at Z --+ +c¢.

However, only the discrete spectrum will be considered in this paper, with the exception of a few

additional comments on the possible relevance of the continuum modes.

The analysis can be carried to higher orders in a routine manner (cf. Wu, Stewart & Cowley

[41]). Consideration of the third terms in the expansion for each deck determines a2, but the

details of this calculation, as well as a2 itself, are of little relevance here and hence are omitted.
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Tile crucial equation, which determines the modal growth rate, is obtained by considering the

fourth term in the expansion for each deck. The final result is

(3.30) 4c_0 _ a, O.., - Ax0 + % + -y(Z) ,40 + i:_,'(Z,X) ,

where tile function O2(X, Z) represents the complementary part of the solution for (T2 and 1-_,

analogous to _1 in (3.26). Tile constant 70 is defined by

rrc04 k 2
70 = - 4--A-+ _ _ z ,2Ra as (2aoCo ) ,

while 7(Z; 5:, _ corresponds to

(O r'[fll {p, _. _. 3 I

(3.31) = -T_o <(Z) -

The function X is real-valued and therefore does not affect the leading-order growth rate.

Equation (3.30) is an inhomogeneous Schr5dinger equation. The standard procedure of im-

posing the solvability condition yields

Ax = (% + Icd)A ,

where

(3.32) Ft_ = "_(Z)_ _ d Z .

The total growth rate therefore corresponds to (% + Igd) , with _d being the 'excess growth rate'

induced by the distortion. When & > > O(R-_), the excess growth rate becomes much larger than

the second term in %, which corresponds to the viscous contribution to the growth rate (Goldstein

& Durbin [12]). In other words, the instability modes of interest now becomes predominantly

inviscid, with a growth rate given by

(3.33) _ - 4A + q'(Z)_ "_d Z.
OO

As the distortion amplitude is increased further, the inviscid growth rate continues to increase

and for & >> O(R -1/32) it exceeds the growth rate of the longer wavelength lower-branch modes

(which are described by the triple-deck structure and correspond to the most unstable modes of

the unperturbed flow). Clearly, the nature of the instability has been fundamentally altered at

this stage.

In summary, we have seen that the asymptotic regime studied above describes a continuous

transition as the distortion amplitude is varied, from a modified form of the short-wavelength,

viscous modes in an unperturbed Blasius flow, to primarily inviscid modes that eventually dominate

the overall instability of the perturbed flow. Because the structure of these modes can be localised

in the spanwise direction and, in general, is completely dictated by the shape of the Klebanoff

distortion, we will refer to these modes as 'localised T-S modes'.
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FIG. 3.1. The shape of the distortion. Curves (1)-(3) correspond to d = 2, 4, 6

It may be seen from (3.28) and (3.33) that the spanwise Shape and the growth rate of the

instability mode are controlled, respectively, by the wall shear U_(0, Z;5:,_ and the torsion

U}_'(0, Z; 2,, t_ of tile distortion in tlle streamwise velocity profile. For a time harmonic gust, the

latter is given by

(3.34) ,,,,,,c_ { }_Dw, Z;e,t) = (2_')-_ /_'"'(0, Z;e)e ir +c.c. w_,(Z) ,

which, in view of (2.16), is related to the wall-shear distortion U}_(0, Z; 5:, t_ via

rr'",_ Z;_,t)= " - 2)Up(O, Z; x, _+_' D kt',

However, as pointed out before, the original equations (3.28) and (3.32) governing the instability

modes are valid h)r any arbitrary form of time dependence for the free-stream gust as long as the

asymptotic scalings outlined in §2.2 are satisfied.

Watmuff [35] had observed that when the amplitude of the free-stream disturbance was re-

duced: transition actually occurred earlier. This is indeed an anomalous behaviour if the level of

the free-stream disturbance is regarded as the. relevant control parameter. However, Watmuff also

pointed out that the ffeCrease in distortion amplitude was accompanied by the location of its maxi-

nmm moving closer to the wall; so it is quite possible that tile wail-shear perturbation U_)(0, Z; 2:

actually increased in maguitude during that process. If that was true, then the seemingly anoma-

lous observation would be completely 'normal' according to the present theory. Unfortunately, the

wall-shear perturbation was not measured in Watmuff's experiment and is cumbersome to measure,

in general. Therefore, the above conjecture cannot be easily verified.

The spectrum of SchrSdinger operator is well understood; but, in order to aid our subsequent

discussions, we first present solutions for a Klebanoff distortion with the spanwise distribution

d3 Z

(3.35) B(Z) - Z"- + or'- '
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where d is a constant. A localised distribution of this type is believed to be appropriate for Klebanoff

distortions with a finite correlation distance in Z, but periodic distributions (corresponding to large

coherence in Z) can also be easily analyzed as discussed in §5.1 below. Substituting for B(Z) into

(2.8) and evaluating the principal-value integral, we find that

(3.36) -w;(Z) = BoO
3Z2 /a¢)

UZ _Foe7 = BoS(Z) ,

where we have set Bo = 2_r_?o_. The shape function S(Z) is depicted in figure 3.1 for several values

of d. Tile requirement that the spanwise velocity of tile distortion vanishes at +oc dictates that

S(Z) must change its sign in the spanwise direction. All of the calculations presented below pertain

to the (arbitrary) choice of d = 4.

Just to illustrate the general behaviour of the spectrum, we first, set _ = 1 in (3.29) and plot

the eigenvahms a, for a range of/30 (figure 3.2). The variation of Bo also emulates various instances

during a single period of the time-harmonic Klebanoff fluctuation. Specifically, Bo corresponds to

the modulation phase in which the distortion is characterized by a low-speed streak. Symmetric

(varicose) modes can be found for both positive and negative B0, except in a gap 0 < B0 < 0.16 =

B_. Unlike the Schrgdinger operator with a purely imaginary potential (i.e. the case analyzed in

Part I), the standard Schr6dinger equation (3.28) also admits antisynlmetric (i.e. sinuous) modes

in addition to the varicose ones. These modes appear only for negative Bo (or, equivalently, during

a small window that does not exceed one half of the modulation cycle in terms of duration). For

B0 < 0, there are also higher unstable modes, both symnmtrie and antisymmetric, which are

distinguished by the number of zeros in the corresponding eigenfunctions, as displayed in figure

3.3(a) and (b). These higher modes are generally less unstable than the first ones and, accordingly,

will not be discussed here any further. While tile symmetric modes for B0 > Bc concentrate near

the centerline (see the dashed line in figure 3.3b), the modes for B0 < 0 have peaks outside the

main region of the mean-flow distortion. Interestingly enough, both the eigenvalue as and the

eigenfunctions q'(Z) for the varicose and sinuous modes for/30 < 0 are remarkably similar to each

other (except in the immediate vicinity of Z = 0) in this particular ease, as seen from figures 3.2

and 3.3.

To assess the relative importance of the sinuous and the varicose modes, we now examine the

'unit growth rate', which is defined as

f?_o = - S( Z)O 2 d Z
0<5

and, therefore, represents the excess growth rate (3.32) normalized by the amplitude of the distor-

tion. As is shown in figure 3.4, the first sinuous modes exhibit a slightly higher unit growth rate

than the varicose modes, except as B0 -+ 0 when the growth rate _o decreases sharply.

Equations (3.28), (3.29) and (3.31) are used in conjunction with (3.33) to compute the inviscid

growth rate due to the time-varying Klebanoff distortion. The growth rates of both the sinuous

and varicose modes at three separate instants of time are shown in figure 3.5 for the ease of • = 2.0

and Bo = 1.4. Observe that the sinuous modes have considerably larger growth rates than the
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FIG. 3.4. Variation of the 'unit growth rate' with Bo. Solid line: varicose modes; dashed line: sinuous modes.
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varicose modes. For this reason, we shall focus on the sinuous modes henceforth. Indeed, even

in the experiments of Matsubara & Alfredsson [26], the sinuous modes were noted to occur more

frequently.

As described earlier in the context of figure 3.2, sinuous modes exist only when _7_(y._ is neg-

ative, i.e. at those instants during the modulation cycle when tile perturbed flow is characterised

by a significant low-speed streak. This finding is consistent with many of the experimental obser-

vations noted in the Introduction. Furthermore, the instability occurs only in that part of cycle

when "_(_, t-) is also negative. On tile other hand, 7 and _, tend to 0 as both 2 --+ 0 and _ --+ co;

the former is implied by (2.15), while the latter is apparent from figure 2.1. Thus, ? and _ have

appreciable magnitudes over only a restricted window in the streamwise direction. The instability

modes under consideration are, therefore, expected to be localised in space as well as in time.

The local and intermittent nature of the instability can be further illustrated by plotting the

growth-rate contours in the 0J - 2 plane at various instants of time, as shown in figures 3.6(a)-(d)

for the case of Bo = 1.4. At {.= -1.8, a small 'bubble' of instability is observed within the d - 5"

plane, indicating the incipience of the instability to be at a slightly earlier time. As time increases,

the bubble grows in both spatial and spectral extent, reaching its maximum at [ _ -0.82, after

which the bubble shrinks and finally disappears, before re-emerging during the next cycle of the

Klebanoff fluctuation. Of eourse, given the disparity between the temporal scales of the Klebanoff

fluctuation and the instability waves the latter could amplify substantially within a single period

of modulation and, therefore, reach sufficiently high amplitudes to induce a local breakdown. For

the periodically modulated Klebanoff distortion, the instability occurs during a fixed phase of the

cycle, but, in reality, the modulation is stochastic so that this local instability takes place randomly

as has been observed in the experiments of Kendall [18].

It is possible to deduce usefill information about the spatio-temporal behaviour of the instabil-

ity from figures 3.6(a)-(d). The localised structure of the instability wave in both z and Z suggests
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FIG. 3.6. Contours of growth rates of the local instability induced by a Klebanoff mode (Bo = 1.4). Figures

(a)-(d) correspond to the instants t: = - 1.8, - 1.25, -0.82, -0.44.

that, in practice, the unstable modes would be manifested as patches of oscillations. Strictly speak-

ing, the centres of these patches can only be determined after considering the complex history of

all unstable disturbances. However, it may still be useful to model the centre of a patch as being

close to the 2 location that corresponds to the growth rate maximum in figures 3.6(a)-(d). LFrom
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[ = -1.80 to t-= -0.82, the centre of the patch migrates from 2 = 0.8 to 1.6, yielding an apparent

patch 'convection velocity' of I_ _ 0.82. Even though the above prediction is based on a number

of simplifying assumptions, migration of patches at such a speed appears to have been observed in

experiments as well. It may be stressed that the estimation of the patch convection speed became

possible only because the unsteady nature of tile distortion was accounted for with a reasonable

accuracy.

It is expected that the unstable modes might amplify sufficiently over a single cycle of modula-

tion, so as to unleash a chain of nonlinear events as described in the following section. However, if

the nonlinear effects do not come into play within a single period (or streamwise wavelength) of the

modulation (i.e. starting from the genesis of the instability mode), then the question arises as to

how a given disturbance entity evolves through multiple modulation cycles in time and/or in space.

It may be possible to pursue a multi-dimensional Floquet theory (i.e. Floquet analysis in both 2

and t-) within a finite-Reynolds-number framework in order to examine how the local/instantaneous

modes are linked to the global (i.e. Floquet) ones. Such a line of attack has has recently been taken

by Hall [17] on the analogous problem for time-periodic (but spatially homogeneous) Stokes layer.

Hall finds that the phase speeds of certain instantaneously growing modes, if continued into their

decaying phase, have a periodic dependence on time, and thus these modes correspond to ttle high-

Reynolds-number version of the Floquet modes. However, all such modes are found to be globally

stable, which suggests that local modes rather than the global modes are the cause of transition, at

least, in the Stokes-layer case. The issue of local versus Floquet modes becomes more complicated

for the doubly inhomogeneous basic state examined herein. There is insufficient information from

the experiments in terms of whether transition does result from an accumulated growth associated

with the global modes.

4. Nonlinear instability. The linear stability analysis in the previous section was based on

the assumption that the amplitude ¢ of the instability waves is sufficiently small. However, as the

waves are amplified and attain a certain threshold range of amplitudes, the nonlinear effects also

become significant. In this section, we will show that the instability waves evolve through two

distinct weakly nonlinear stages before finally entering the strongly nonlinear regime of develop-

ment. To a great extent, the details of this nonlinear analysis are similar to tile previous analyses

of nonequilibrium critical layers; therefore, many of the details related to this analysis are omitted

from this paper.

4.1. Nonlinear stage I. The first nonlinear stage is attained when

(4.1) e -- O(b _) ,.. ( ARA ]-_
\--[7- I

At this stage, the fluctuations associated with the instability wave still expand according to (3.2)-

(3.5), as in the linear case. Moreover, the first three terms in the expansions are unaffected by

nonlinearity so that the shape of the spanwise eigenfunction cI,(Z) continues to be governed by

(3.28). It is now well established that the dominant nonlinear interaction occurs within the critical

layer and the effect of this cubic nonlinearity is to produce a velocity jump N across this layer
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(Goldstein [10], Cowley & Wu [7]). The disturbance amplitude in (4.1) was chosen so that this

jump influences the overall development (i.e. growth) of tile instability mode at the same order as

the linear dynamics.

The form of the nonlinear term depends on viscous effects. As in Part I, we assume that

R-½ = r_ l_ ,

where the Haberman parameter r (r = O(1)) characterizes the relative influence of viscosity with

respect to nonlinearity within the critical layer.

The jump N is given by tile same expression as (5.3) in Part I, provided that A(X) in that

equation is replaced by the combined mode shape A(X)O(Z). Of course, the Z-dependent factors

can now be brought outside of the integral sign. Again, matching the solution from each deck to

the respective solutions from the adjacent regions yields (3.30), but with the nonlinear velocity

jump N added to the right-hand side. Applying the solvability condition to this inhomogeneous

equation, we obtain the nonlinear amplitude evolution equation
..

/07?(4.2)Ax -- boa - ir (2(2_ + _j)I((_, rtl.s)A(x - _)A(X - (- _j)A*(X - 2_ - _)d_d_],

where

f__(_Oz) 2(4.3) F = 2_0_: _ d Z tC(_,,jI._) = e-s(_C+_C') _ = -l_g_r-
' 3

The appropriate initial condition for (4.2) follows from nmtching tile upstream behaviour of the

nonlinear solution with the linear stage, namely,

(4.4) A_e _x as x--+-c_.

Numerical solutions presented below demonstrate that, for relatively weak viscosity (i.e. r <:<:

1), A(X) develops a singularity at a finite location Xs, and that the structure of this singularity

is the same as that proposed earlier by Goldstein & Choi [11]:

ao

(4.5) A(X)_., (X_-X) 3+iq as X-+X_ ,

where q is a real number. The above singularity, however, does not occur when the viscous

parameter s exceeds a critical value.

Equation (4.2) is formally derived by assuming that r = O(1). However, the permissible range

of r is in fact quite large,

6

/¢X_ < r < R_ ,

as may be deduced from (2.17), (2.21) and (2.23). Thus, r (or, equivalently, s) can be either a small

or a large paraineter without invalidating (4.2). The simplified form of this evolution equation in

the very viscous limit s _ cc can be derived by rescaling the amplitude function according to

(4.6) A = sZA(X)e i_°
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hiserting this into the nonlinear term in (4.2), and performing integratiou by parts, we obtain

N= (68)-' L_L_I((4,,/){I - s¼4[O'(X - 4) + O'(X- 4-7/)- 20'(X- 2_-7,)]}

exp{i. ¼[O(X- 4)+ O(X - 4 - 'D+ O(X - 24- ,)1}

(4.7) A(X - 4)A(X - 4-'1)-4'(X- 24- 77)d4d'J +... ,

where we have ignored the terms which do not affect the first two orders of the asymptote for N.

As in \Vu, Stewart & Cowley [41], we now introduce the substitution _ -+ s-½4, and take the linfit

s -+ oc to obtai'n a two-term asymptotic approximation for N. Inserting this, along with (4.6),

into (4.2), we find that

O' (37r)½ l °° , _ .- 72 F r/-_[A(X-v)[2dq,

F ^ L _(4.8) A' ----- I'_,fl + _-_A _]-1 [O'(X) - O'(X - ,#)] i.4(X - ,/)[2 d 7/.

The first of these equations indicates that nonlinearity induces a wavelength shortening or 'dilation,'

which in turn influences the energy growth of the disturbance via the coupling between the phase

and the amplitude equations. The energy growth is now governed l)y an equation with a quintic

nonlinearity, as may be verified by substituting the first equation into the second. Ai1 analogous

finding was noted earlier by Wu, Leib & Goldstein [42] in the context of nonlinear interaction

between pairs of T-S waves.

4.2. Nonlinear stage II. The structure (4.5) of the singularity during stage I of the nonlinear

evolution shows that

Ax/A.._(Xs-X) -1 as X-_X_,

which suggests that the instability mode must now evolve over a faster scale in the streamwise

direction. In particular, a distinct asymptotic regime is reached when Xs - X = O(&2), because

the amplitude growth rate becomes comparable with the 0(5) wavelength correction cruised by the

Ktebanoff distortion. The scaled streamwise coordinate governing this second stage of nonlinear

evolution is defined as

(4.9) 2 = (X - X_)/52 .

The disturbance amplitude cA(X) h_s increased to O(_), where

(4.10) _ = e(7-6 = 5½ .

In this regime, the instability-wave perturbations in the main part of the boundary layer expand

according to

_t : _{_4(._, Z)u0 ei_ -t-_i/1 -t- . . .} ...t-c.c,
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with similar expansions for v, w and p. Observe that, unlike in the preceding stages of evolution, the

growth of the unstable fluctuations is nonuniform across tile relevant range of spanwise locations;

consequently, the amplitude function ]1 depends on both .'_ and Z.

Matching the solutions in the various decks at the second order of approximation leads to the

amplitude equation for ,4(X, Z):

i _zz = i ( ) .- 7_ r-(4.11) _]2 4ao _ _/,(Z;2,_-a_ .4+,F:\.(X,Z),

where [" = rrAact0%4, and tile nonlinear term,

+&j.aCX - - ¢ - ,),4)(x - - .)]
z

(4.12) +(3 [.4(X - ().4(X - ( - ,]).a} (X - 2( - ,)] z} d(dr/,

/

again represents the effect of interactions within the critical layer. Because of the shorter streamwise

length scale during the second nonlinear stage, the width of the critical layer has increased from

an 0(# 4) value (during the first nonlinear stage) to O(02). As a result of the thicker critical-layer

region, viscous effects no longer play any role in determining the disturbance evolution at the above

order.

Equation (4.11) reflects the balance between spanwise scattering by the Klebanoff distortion

and the nonlinear em,cts, while the linear growth has become a secondary effect durin_g st_age..!I:.A

distinguishing feature of this stage is that the spanwise distribution of the instabihts; waveis aitered

by the nonlinear effects, in contrast to stage I wherein the spanwise modal shape was independent

of the modal amplitude.

The approprlate initial condition fi)r (4.11) follows from the requirement of matching with the

singular solution from the upstream region. Thus,

(4.13) ]l---+ao(-2)-(a+iv){O(Z)+(-,Y)-lOl(Z)+...}e i_'2 as 2--+-_.

The dominant term on the right-hand side of (4.13) is easily derived by rewriting (4.5) in terms of

J_'. The governing equation for the second-order correction term _1 can be obtained by inserting

(4.13) into (4.11) and equating the terms at 0((-,{')-4). To obtain a unique solution for (I_l from

this equation, the orthogonality condition,

f? <I'qq dZ = 0 ,
oo

is imposed. Note that the amplitude evolution equation (4.11) for stage II could have been derived

without considering the solution from stage I. However, the latter is still essential to derive the

initial condition (4.13).
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FIO. 4.1. Nonlinear evolution of the most unstable (sinuous) mode in figure 3.6b (Bo = 1.4, _ = 1.2, w = 0.65)
for viscosity parameter s = 0, 1.0, 2.0 and 15.0. The dashed line represents the local singular solution (4.,5).

4.3. Numerical results for nonlinear evolution. To illustrate the features of amplitude

evolution during nonlinear stage I, we plot tile magnitude of A as a function of the streamwise

coordinate X (figure 4.1). The parameter 2, which indicates the streamwise location on the longer

streamwise scale, is chosen (somewhat arbitrarily) to be 1.2; similarly, tim distortion amplitude is

chosen to be B0 = 1.4 and the frequency of the most unstable, i.e. sinuous mode to be w = 0.65.

For the purpose of plotting the results, we have renormalized the amplitude function A(X) such

that the coefficient F = 1.

As mentioned earlier, the solution develops a singularity of the form (4.5) at sufficiently small

values of the viscosity parameter s. Figure 4.1 shows, however, that the amplification is not

monotonic, rather it exhibits transient decay or oscillations before the eventual blowup at a finite

distance downstream. It is interesting to note that increasing the viscous effect appears to produce

stronger oscillations upstream of the singularity. The amplitude curve for s = 1 displays multiple

spikes even on the logarithmic scale. These spikes are adequately resolved during the mlmerical

integration process by using a fine step size (A._" = 1/400). At larger values of the viscosity

parameter _ (viz., at s = 2 and _s= 15), nonlinearity has a stabilising effect on the disturbance

evolution and the solution either decays in a non-monotonic fashion (as at s = 2 in figure 4.1) or

amplifies slowly towards the end of the integration domain (s = 15).

As noted earlier, the stage I formulation becomes invalid when approaching the singularity and

one needs to solve (4.11) to predict the subsequent evolution of the instability mode during stage

II of nonlinear evolution. In order to ensure a smooth match with upstream solution, however, it

is necessary to pick a large enough value of -._" for imposing the constraint (4.13). To this end,

we perform a trial integration through the far-upstream region (typically starting at ._." = -250)

so as to identify the region over which the one- and two-term approximations from (4.13) may be

considered as being sufficiently accurate. A relatively coarse grid (A._." = 0.5) is typicMly adequate

for this purpose. Typically, we found that a two-term approximation is accurate up to ._ _ -120.
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Tile solution downstream from this location is obtained by marching (4.11) with a smaller step

size. Because the amplitude function now depends on both streamwise and spanwise coordinates,

we introduce the norm

{S_+ )E(2)= IACZ,2)I2 dZ ½
DO

to measure the disturbance amplitude at a given streamwise location. Figure 4.2 illustrates the

streamwise development of E(._') through the nonlinear stage II. Observe that the simultaneous

spatio-temporal modulation during nonlinear stage II has a strong destabilising effect, which causes

an explosive amplification of the disturbance to lead to yet another singularity at a finite distance

Jr, on the shorter streamwise scale invok, ed. The spanwise distribution of A at three typical

streamwise stations is shown in figure 4.3. As illustrated therein, the nonlinear deformation first

leads to a shift in the peak location from Z _ 12.0 to Z _ 6.5, and then to a steepening of the

mode shape near the peak at Z, _ 6.5. Thus, nonlinearity inhibits any lateral spreading and,

apparently, leads to a singularity of self-focusing type.

_,_ conjecture that the structure of the self-focusing singularity may be of the same type as

that proposed in Wu [38] for a similar evolution equation, namely,

(4.14) .21= (2+ - 2)-(_+ib)F(2) , 2 = (2+ - X)-½(Z - Z,) ,

where b is real constant and F satisfies a rather complex equation as given in Wu [38]. If the

final outcome of the stage II evolution is represented by (4.14), then the subsequent disturbance

evolution must occur on the even shorter scale

2, - 2 = o(_).

The growth rate of the disturbance is now comparable with the streamwise wavenumber and the

local spanwise length scale (near Z = Z_) is also of the same order as the streamwise wavelength.
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The appropriate local variables are then given by

i" = (S: - S:_)I_, 2 = _-½(z - z_).

One also finds that due to a fllrther increase in the thickness of the nonequilibrium critical layer

in the new regime, the critical layer actually merges with Tolhnien layer. Since the amplitude

of the disturbance increases to _b-_ = O(&), i.e. is of the same order as the Blasius flow in the

Tollmien-layer, the flow in this region becomes strongly nonlinear. In fact, tile whole flow is now

described by the inviscid form of the fully three-dimensional triple-deck system. Earlier, Wu et al.

[42] had shown that pairs of viscous T-S waves in the Blasius boundary layer may evolve through

several weakly nonlinear regimes before ending up with the same, fully nonlinear, inviscid triple-

deck system. A final noteworthy feature of the overall nonlinear development, is that the Klebanoff

distortion exerts its influence only during the stages I and II and that its effect is felt only as a

higher-order correction during stage III. In other words, the Klebanoff distortion is likely to serve

only as a catalyst that promotes the early growth of the disturbance, which eventually evolves

into the same canonical regime of inviscid, strongly nonlinear behaviour as that predicted for an

unperturbed Blasius flow.
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V_ emphasize that the results of the nonlinear theory ought to be treated with some cau-

tion. While the prediction that tile evolution would occur over progressively shorter length scales

is broadly in agreement with experimental observations, the formation of the final singularity is

certainly non-physical. Probably strong nonlinearity would prevent it from occurring. Another

effect that may alter the nonlinear behaviour is nonparallelism of the basic state, which is sup-

pressed when integrating the nonlinear evolution equations. Even though this effect is small in the

strict asymptotic sense, it may be significant for the moderate Reynolds numbers encountered in

practice.

5. Spanwise periodic distortion. Having examined tile case of spanwise localised Klebanoff

distortions thus far, we now briefly consider the instability characteristics in the presence of global,

but spanwise periodic distortions. Specifically, in §5.1, we apply Floquet theory to study the

instability modes first considered in §3. In §5.2, we examine the analogy, for a nonstationary

distortion, of the Goldstein-Wundrow [14] (GW) modes, which are associated with a subharmonic

parametric resonance. The relation between the Floquet and the GW modes is discussed in §5.3.

5.1. Floquet modes. Let us now examine how the results in §§3-4 need to be modified in

the case of a spanwise periodic wail-shear perturbation //D(Z; 2, t). As mentioned earlier, (3.28)

still holds in this case, but its solution according to Floquet theory takes the form

(5.1) ¢I, = _e it'Z ,

where p is a real number, with p = 0 denoting a flmdamental mode and p = 1 being the subhar-

monic mode. The periodic function _ is governed by

(5.2) _ -- _zz + 2ip_z - p2_ + ¢(Z)_ = ct_ ,

where ¢(Z) is related to tile wall-shear fluctuation AD as defined in (3.29). The operator

is Hernfitian, so that its adjoint is simply its complex conjugate, /_*. it also follows that the

adjoint eigensolution is correspondingly given by the complex conjugate of ft. In view of the

Hermitian property, tile second order term in the perturbation expansion (3.2) (3.5) merely]ends

to a correction to the streamwise wavenumber similar to that for the localised distortion. At

the fourth order, again, one finds (3.30) as obtained earlier in §3. On writing _i'2 = _._ e i t,z;

multiplying by _* on both sides of the resultant equation; and integrating the resulting equation

over t]ie spanwise wavelength L, we obtain the amplitude evolution equation Ax = (% + nd)A

where the excess growth rate nd is given by

/?(5.3) _ = "/(Z)I'_I 2 d Z,

/?provided that • is norlnalized such that I_,1_d Z = 1. The function 3,(Z) is related to the wall

torsion of the Klebanoff distortion profile (see (3.31)).
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Similar to that in Part I, a perturbation analysis can be carried out for the limiting case of

small distortion amplitudes ¢ << l, and this leads to

(5.4) as = -1 4- (q2 + 4p2f12)½ , _ = (2___),/2 cosflZ + O(¢)

with fl = 7r/L and qc = _ fl',(Z) cos(2flz)d Z..Inserting _ into (5.3) to calculate the excess

growth rate, one finds the total growth rate

(5.5) _r--_d+7O = lr Jo 7(Z)c°s2(t3z)dZ- 4--A

As an example, the calculations will be carried out for the simple harmonic potential fimction

= Bocos(2 z)

where Bo denotes a measure of the distortion amplitude. Unlike the localised modes, Floquet

modes exist for both positive and negative /30, but it is sufficient to just consider the case of

Bo > 0 since

7r

(5.6) as(-Bo) = a,(Uo) , ¢(Z,-Bo) = ¢(Z + _-fi,Bo) •

The small amplitude limit (B0 --_ 0) for the simple harmonic potential corresponds to

(5.7) C_s= -1 4- (_--2° + 4p2H2)} ,

which implies that two separate branches of unstable eigensolutions exist. Analytic continuation of

these two branches to finite values of Bo and p will be referred to as branches I and II, respectively.
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Therelativeimportanceofthetwobranchesmaybeassessedby considering the 'unit growth

rates', defined via

_o = cos(2/3z)l¢l"- d Z .

The variation of n0 with p is sho_na in figures 5.1(a)-(b) for three values of the distortion amplitude

Bo. At each of those amplitudes, tile subharmonic mode (p = 0) ha.s the largest growth rate, but

tile peak becomes less prominent as B0 increases. The branch-I modes are generally more unstMJle

than the branch-II modes. Figure 5.1(b) suggests that the unit growth of the subharmonic mode

along branch II is a decreasing function of tile amplitude parameter Bo.

Tile relations (5.6) imply that the mode for a negative B0 corresponds to a 7r/(23) shift in

Z of the mode for a positive B0. Since B0 changes its sign during each cycle of the Klebanoff

fluctuation, tile streak oscillation associated with the instability is expected to meander in the

spanwise direction. :

It can be shown that the nonlinear amplitude equations (4.2) and (4.11), which were originally

derived for a localised distortion, are also valid for the case of a periodic distortion, except that the

integral in the definition of F (see 4.3)) now is over a single wavelength in the spanwise direction.

5.2. Goldstein-Wundrow (GW) modes. As alluded to in the Introduction, a periodic

distortion may also be unstable to the GW modes (Goldstein & Wundrow [14]) at distances l* =

O(k_lA) from the leading edge. Sinfilar to the local modes considered in §§3-4, the GW modes

arise because tile curvature of the distortion is comparable with that of the Blasius profile in a

wall layer corresponding to # _ _, such that

(5.8) CD_kll _ _2 .

The GW modes also have O(& -1 ) streamwise wavelengths relative to the boundary-layer thickness

R-½l*. Unlike the Floquet modes, however, both spanwise and streamwise length scales of the

GW modes are comparable with the spanwise period of the distortion. Thus

(5.9) R-½1*

The relations (5.8) (5.9) imply that the threshold disturbance amplitude required for the onset of

tile GW modes is given by

.I*RA ._t
eD "_ I,_) _ ,,, (Rh/kl) -1/2(5.10)

Accordingly, we write

eD = (RA/k_)-I/2Bo ,

where B0 = O(1) denotes the scaled amplitude of the distortion. A GW mode consists of a pair of

oblique waves, and it can be expanded in the same form as tile Floquet modes, i.e. the main-deck

eigensolutions are given by (3.2)-(3.5), except that (Y_ in (3.4) is replaced by (_, and

(5.11) &=( l* )½ AO(Z)=e_X(eiZZ£e_i/3z )ARA '
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The-1- signs signify two separate families of instability modes. Even though modes from these two

families are trivially related to each other via a shift in Z by 7r/(2/3), modes from both families must

be considered, in general. Since a GW mode involves subharmonics of tile Klebanoff distortion, its

amplification can be attributed to a parametric resonance mechanism.

Similar to the local and the Floquet modes, tile Klehanoff distortion in the bulk of the boundary

layer leads to an 0(6) correction to the phase speed. However, for the present periodic case, the

above process is completely passive in the sense that it does not affect either the growth rate

or ttle shape of the instability mode. The instability characteristics are solely controlled by the

curvature of the distortion, exactly as in Goldstein & Wundrow [14]. Substituting the curvature

of the present distortion into their equation (6.22), we obtain the total growth rate of a GW mode

induced by a Klebanoff distortion,

2 cos 0 ,f+ 7re_ ,_2 }(5.12) _ 1 + cos20 I. /k2(2y:)3/2 cos20f't_(Y:,t_ - 7rc_- -_-+ ,^_ , ,2R_ a' (2a0c0) -_

where 0 = tan -1 _, eo = _, and

/3 fo'_ w:(Z)cos(2i3Z)d Z}{U'"(0,y)e -i_(5.13) f_('(_' _ = -t2-_[ . .(.e.j'_ .

For the excess growth rate induced by the Klebanoff distortion to be dominant, the disturbance

amplitude must satisfy 5 >> R-_. Additionally, we must have 5 << 1 in order for the foregoing

analysis to be valid. The above two considerations imply that the result. (5.12) is valid if the

wavelength of the Klebanoff fluctuation falls in the range

2- l*

(5.14) n_' << S <</_'_ '

or, alternatively, if the amplitude of the free-stream disturbance lies within

(5.15) RA 1 << e D _<<R; _'_I

The result (5.12) indicates that omission of one of the modes, for example, the minus mode,

will lead to the erroneous conclusion that a distortion with positive tic > 0 will not be able to

support (inviscid) instability waves with cos 20 < 0. Again, for a Klebanoff distortion, tic changes

its sign during the modulation cycle and, therefore, there must be a switching between the plus

and minus modes during this cycle.

Calculations were performed for u,'_(Z) = Bo cos(2/3Z) and selected values of/3. In figure 5.2,

we show the inviscid growth rate (i.e. t_r with the last term in (5.12) dropped), as a function of the

wavenumber c*0. For small and moderate values of/3, the peak growth rate occurs near ao = 0.45.

The peak growth rate decreases and is eventually stabilised, as ¢3 is increased. For larger values of

fl, the dominant instability modes emerge at small _ values, centred at. a0 _ 0.12.

Finally, we note that once the amplitude of the instability modes reaches the threshold range

of

e=O(_ '°)=O((_)-_),
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FIG. 5.2. Growth rates of Goldstein-Wundrow modes. The parameters Bo = 4, 5" = 1.2 and t _ -1.498.

Curves (1)-(5) correspond to/3 =0.063, 0.125, 0.16, 0.18, 0._.

the function A(X, Z) must be written as

A=A(X)(eiZZ4-e-il_z) ,

where the amplitude function :i is governed by the nonlinear equation derived previously by Gold-

stein & Choi [11] and Wu, Lee &: Cowley [39].

5.3. The relation between Floquet modes and GW modes. The GW modes and Flo-

quet modes considered in §5.1 can exist only when the Klebanoff distortion is periodic in the

spanwise direction. Let us discuss the relation between them fl'om two separate viewpoints. First,

consider the stability properties at a fixed location of 2 = O(1), and examine which type of modes

emerge and how their character changes as the amplitude parameter eD is gradually increased from

zero. As indicated by (2.22) and (5.10), GW modes require a smaller threshold for the distortion

amplitude than the Floquet modes, and hence the GW modes appear first a_s eD is increased. That

is, for eD specified by (5.10), the GW modes correspond to the only inviscid instability that the dis-

turbed flow can support. As (:D is further increased, the streamwise wavenumber and gro$:th rate

of GW modes (which are of O(eDkl 1) and O((eDk_ 1)4), respectively) increase as well. Because the

spanwise wavenumber must remain fixed, the GW modes become progressively 'two-dimensional'.

To investigate this large:amplitude limit (viz. Bo >> 1 or e D )_ (RA/ki)-l/2), we introduce the

rescaled wavenumber and phase speed via

(a0, co) = B0(a0, a_) .

Inserting these iiito (5:12) and taking the limit B0 -4 oc reduces (5.12) to

7r_ 3 7r_ 4

(,5.16) _ = ._', _+ a_(_, _ -_:(2:_)3/_, -_},k
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which corresponds to tile small distortion amplitude limit of tile growth rate of Floquet modes.

More precisely, the large-amplitude behaviour (5.16) remains valid until Bo = O((klRA)l/_), i.e.

eD _" O(RA l/a k_/3), which corresponds to tile threshold magnitude of the distortion for the Floquet

modes to arise (see (2.22)). At this stage, the enhanced streamwise growth of the instability modes

is balanced by tile spanwise modulation in the main part of the boundary layer. Thus, we have

shown that the GW and the Floquet modes exist in separate regimes of distortion amplitude,

and that tile large-distortion limit of tile GW modes 'matches' to the small-distortion limit of the

Floquet modes.

An alternative way to view the relation between GW and Floquet modes is to consider the

instability characteristics for a fixed distortion strength eD, and examine how these modes emerge

and evolve as the streamwise location is varied. Suppose that eD "_ O(R-£1/3k_/a) as specified by

(2.22), so that the distorted flow supports Floquet modes at 2_= O(1). Given that the threshold

distortion strength for GW modes is much smaller, one may expect them to exist in the upstream

region 2 << 1. The link between the upstream GW modes and Floquet modes is best revealed by

examining the small-_ asympt6ie of the Floquet modes. If one takes into account the streamwise

variation of the distortion as well as of the Blasius flow, the key balance (2.19) can be expressed

more precisely as

(5.17) evk_ l C'D,y_y (0, _)l'_ _ _21"] ,

where }_ = co/)_ = C_o/A2 is the scaled critical level. Since UD,yyy _ (_)-3/2U'", and/_'"'(0, _) --*

(-iAo_ 2) (as indicated by (2.15) and (2.16)), the relation (5.17) shows that l_ .-0 23/_. and hence

(_o "_ _1/2 Co _- _, as _ -* 0. This suggests the rescaling

(5.18) (C_o, Co) = (:_1/')5o, :_ Co) -

Ill the limit _ _ 0, the potential ¢ in (5.2) becomes vanishingly small, and so the result (5.5)

applies. Substituting (5.18) into (5.5), and using (3.29) and the fact that/_)'"(0, 2) _ -iA02 e, we

find

5 _ 0 23J2c(5.19) h; r

where £o = 0.33206, and

_ =-= -{ 3 fo_ W:(Z)cos(2_3Z)d ZI(-iAoe-'_ +c.c.) .

The above approximation becomes invalid as • = O(klRA) -1/3, at which stage the stream-

wise wavenumber becomes comparable with the spanwise wavenumber so that the modes be-

come fully three-dimensional in character. Thus, the GW modes operate in the region where

- (klRA)l/3_ = O(1), and their growth rates are given by (5.12), provided • is replaced by :_,

and U'" in (5.13) by its upstream asymptote (-i_2Ao). Clearly, the Iarge-_ limit of this result

matches to (5.19). Thus the upstream limit of Floquet modes matches to the downstream limit of

the GW modes, i.e. the Floquet modes represent the downstream continuation of the GW modes.
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Onemust.notethat theabovematchingbetweentheGWandtheFloquetmodeswasbased
ontheassmnptionoflinearinstability,at least,throughtheregionofoverlapbetweenthetwo.In
reality,of course,theupstreamGW modesmightreacha nonlinearstageof evolutionfirst and,
hence,bypasstheevolutionintoFloquetmodes.

6. Conclusions and discussion. In this paper, we have investigated the effect of long-

wavelength Klebanoff fluctuations on the instability of Blasius boundary layer. By using an

asymptotic approach based on the high-Reynolds-number assumption, we derived a consistent,

albeit simplified, mathematical model, which appears to capture certain key elements of this prob-

lem. SI)ecificaiiy, our analysis indicates that relatively weak Klebanoff fluctuations, which do not

alter the velocity profile by O(1), may change the near-wall curvature of the underlying Blasius flow

by O(1). This, in turn, has the effect of modifying and even fundamentally "altering the instability

characteristics of the boundary-layer flow. Specifically, the perturbed flow can support primarily

two-dimensional instability modes that may be localized ill the spanwise direction. The spanwise

distribution of these modes is controlled l)y the distortion via a SchrSdinger equation governing

the mode shape, in which the local skin friction of the Klebanoff distortion acts as a potential.

The growth rates of these modes are determined by the wall torsion of the perturbed flow.

When the distortion is just strong enough to produce an excess growth comparable with viscous

growth, the abovementioned instability modes may be viewed as modified T-S waves. However, as

the strength of the distortion exceeds a threshold range (in an asymptotic sense), the instability

becomes essentially inviseid, and the characteristic frequencies and growth rates are now much

higher than those of the T-S waves in an unmodified Blasius flow. A localized distortion (such as

what may be induced when the spanwise correlation length of the free-stream disturbance is small)

may induce both sinuous and varicose modes of instability. However, the sinuous modes are found

to be more unstaDie, in general. Because the Klebanoff distortion modulates the base flow in both {

and 2, its effect on the instability is intermittent in time and localized in space, i.e. it is manifested

only during a certain phase of tim modulation and in a limited window along the streamwise

direction. For a localised Klebanoff distortion, for instance, the dominant sinuous modes appear

only during that phase in which the distortion is characterised by a dominant low-speed streak.

A spanwise periodic distortion is found to support analogous, but spatially quasi-periodic modes

through parametric resonance. Even though we assumed the Klcbanoff distortion to have a single

frequency for tile most part, the theory itself is quite general, being equally relevant to a wider

spectrum of vortical free-stream disturbances.

An interesting feature of the instability modes identified in this paper is that, despite the low-

frequency nature of that Klebanoff distortion, the unsteadiness of the distortion plays a crucial

role in this model. (Leib et al. [24] had shown earlier that it is also important to account for

this unsteadiness for correctly predicting tile Klebanoff distortion itself.) Specifically, the above

instability modes would not have been present for a small-amplitude Klebanoff distortion if it was

treated as being steady. Moreover, the intermittent nature and the convection of unstable patches

or spots are both attributed to the unsteadiness of tile distortion.
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Thenonlineardevelopmentofa localisedsinuousinstabilitymodewasalsostudied.Ill stage
I of thisew_lution,themodeamplitudeis governedby animegro-ordinary-differentialequation,
thesolutionof whichdevelopsa finite-distancesingularityif theviscouseffectis not too large,
trot decaysif theviscosityparameterexceedsa criticalvalue.In thevicinityof the singularity,
tile disturbanceentersthesecondregime,in whichits evolutiontakesplaceovera muchshorter
scaleandisgovernedbyintegro-partial-differentialequation.Whilein thefirst stagethespanwise
modalshaperemainsunaffectedby nonlinearity,in the secondregime,it undergoesnonlinear
deformationdueto the simultaneousmodulationby thedistortionandnonlineareffects.The
solutionappears.todevelopyetanothersingularityduringnonlinearstageII, whichcompletesthe
metamorphosisoftheinitiallylinearinstabilityinto fullynonlinear,invisciddisturbancesthatare
genericto thestronglynonlinearphaseof disturbanceevolution.It appearsreasonableto suggest
that thetemporarilyintermittentandspatiallylocalisedinstabilityandits subsequentnonlinear
developmentleadtopatchesofstreakoscillationsandeventurbulentspots./.From our calculation,

it was estimated that the convection velocity of such patches was about. 0.82U_.

The qualitative predictions of our theory are consistent with laboratory observations. Our

results indicate that the streaks can become unstable even without appreciable changes in the

Blasius profile. This is precisely what Matsubara et al. [25] concluded on the basis of their experi-

mental studies. (See, also, Matsubara & Alfredsson [26].) The predicted patches of oscillations and

turbulent spots have been observed in numerous experiments. The elevated growth of instability

wavepaekets in the presence of Klebanoff distortion has also been observed in the experiments by

Kendall [20].

The seemingly puzzling and conflicting experimental observations can be reconciled to some de-

gree when reinterpreted in the light of our theoretical results. As mentioned in §1, the wavepackets

develop out of the background disturbance and amplify downstream. Kendall [19] associated these

with T-S waves. We believe that they are likely to be packets of the local T-S waves identified in

this paper rather than the usual T-S waves in an unmodified Blasius flow. These local T-S waves

exhibit virtually all of the unusual characteristics as observed by Kendall: the onset threshold,

the excess growth, and the range of higher frequencies. Since their growth rates depend on the

magnitude of the Klebanoff fluctuation, it is to be expected that their amplitude at a particular

observation point should have a nonlinear relation with the magnitude of the Klebanoff motion.

Since the spanwise extent of these local T-S modes is determined by the Klebanoff distortion, it is

not surprising that their lateral spreading rate is much smaller than that of a usual T-S wavepacket.

What remains unknown is the receptivity mechanism for the packets of these local T-S waves.

The extreme sensitivity of the boundary-layer response to harmonic point excitation (Watmuff

[34], [35]) could also be explained in the light of the present work. In the presence of Klebanoff

fluctuation, a point excitation definitely generates local T-S modes as well. Therefore, the general

response cannot be represented as a summation of the conventional T-S waves only, as was assumed

in the calculation. This may be the reason why a meaningful comparison was denied unless the

Klebanoff fluctuation is substantially reduced.

The effect of Klebanoff distortions on a planar T-S wave appears to be rather controversial
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(cf.Boikoet al. [4], VVatnmff [36]). In this work, we did ,lot explore this phenomenon in detail.

However, one might expect that the continuous spectrum of (3.28) might be involved in explaining

the observed deformation (i.e. scattering) of tile wave front by the Klebanoff fluctuation. This could

be a topic for future investigation. It might also be useful to examine the connection between the

instability modes examined herein and pure T-S waves, i.e. whether (and to what degree) the above

modes actually emerge from existing T-S waves at. appropriate locations (and/or instants) during

tile modulation cycle and eventually degenerate into them at the end of the transient window of

instability (if they cannot reach nonlinear amplitudes by then). Such issues can be exceedingly

subtle, as demonstrated by Hall [17] for the case of a (spatially homogeneous) unsteady Stokes

layer.

Jacobs & Durbin [23], based on their direct numerical simulations of bypass transition, con-

eluded that the streaks close to tile wall are stable. Only when the streaks lift up to the edge of

the boundary layer to form a 'backward jet' do they break down into turbulent spots. Our results

seem to be in conflict with this finding. There could be a number of reasons for the disagreement.

It might be that the present instability is too weak and that it is masked by other more vigorous

processes. Alternatively, it is plausible that the instability modes identified herein were not excited

in their simulations. Finally, tile energy of the free-stream distUrbances in their simulation is con:

rained in a band of rather high frequencies (an order-of-magnitude higher than typical frequencies

of T-S waves) and, therefore, the streaks are not a linear response to the low-frequency compo-

nents. Rather, they are generated nonlinearly by the interaction of higher-frequency components.

The question as to whether this is the cause behind tl_e discrepancy remains open at this point.

The present work is, of course, far from being a complete or quantitatively accurate descrip-

tion of the problem. Nonetheless, the simplicity of the current model, together with the physical

insights derived fl'om it, appear to justify the assumptions made herein. The theory, we believe,

sheds useful light on a very complex process which has so far eluded a first-principles explana-

tion. The primary shortcoming of the present theory corresponds to its neglect of the spanwise

ellipticity of the Klebanoff fluctuation. The more general problem for Klebanoff distortions with

an O(1) wavelength, including the effects of nonlinearity and stochasticity, is currently under in-

vestigation. Because no analytical techniques currently exist to deal with stochastic eigenvalue

problems with O(1) stochastic parameters, we are pursuing a Monte Carlo approach in an attempt

to quantify the expected growth rate of the instability modes for a given r.m.s, amplitude (and

wavenumber/frequency spectrum) of the free-stream disturbance.
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characteristics of the high-frequency wavepackets observed during previous experiments. The nonlinear development

of a localised sinuous mode is followed across a sequence of as3mlptotic regimo.s using the non-equlibrium critical-layer
theory.
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